Monatshefte für Chemie 116, 591-597 (1985)

Monatshefte für Chemie Chemical Monthly © by Springer-Verlag 1985

Spektroskopisches und thermisches Verhalten von K₄H₂[S₂I₂O₁₄]

Carmen I. Cabello und Enrique J. Baran

Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 1900-La Plata, Argentinien

(Eingegangen 7. August 1984. Angenommen 10. Oktober 1984)

Spectroscopic and Thermal Behaviour of $K_4H_2[S_2I_2O_{14}]$

The infrared and *Raman* spectra of the tittle compound have been recorded and an assignment for the internal vibrations of the $H_2S_2I_2O_{14}^{4-}$ polyanion is proposed. The thermal behaviour was investigated using TG-, DTA-, IR- and Xray methods; it is shown that the polyanion breaks down after the release of one mole of H_2O , generating a mixture of β -K₂SO₄ and I_2O_5 .

(Keywords: IR; Raman; Thermal analysis)

Einleitung

Im Rahmen unserer Arbeiten über das strukturelle, spektroskopische und thermische Verhalten von Polyoxoanionen haben wir jetzt das Schwingungsspektrum und den thermischen Abbau von $K_4H_2[S_2I_2O_{14}]$ untersucht, welches das erst vor kurzem beschriebene $S_2I_2O_{14}^6$ -Heteropolyanion enthält¹.

 $K_4H_2[S_2I_2O_{14}]$ kristallisiert in der monoklinen Raumgruppe P2₁/n mit Z = 2. Das Polyanion besteht aus je zwei SO₄- und IO₆-Einheiten, welche sechs gemeinsame Sauerstoffatome besitzen. Die zwei IO₆-Gruppen besitzen eine gemeinsame Kante wodurch eine I₂O₂-Doppelbrücke entsteht. Jede IO₆-Gruppe teilt weiterhin zwei Sauerstoffatome mit den SO₄-Tetraedern. Somit entsteht ein zentrosymmetrisches Polyanion, aufgebaut durch zwei kondensierte IO₆-Oktaeder, welche seitlich zwei SO₄-Tetraeder anlagern¹.

Alle S—O-Abstände sind praktisch identisch (mittlerer Wert = 1.48 Å), während diejenigen der IO₆-Einheiten viel unterschiedlicher sind, und zwischen 1.80 und 2.90 Å liegen¹. Diese oktaedrische Einheiten

besitzen zwei freie IO_2 -Gruppen während alle anderen Sauerstoffatome geteilt sind. Wie aber die jetzt durchgeführte spektroskopische Untersuchung deutlich bewiesen hat, sind die Protone jeweils an eines der IO_2 -Sauerstoffatome gebunden, so daß in Wirklichkeit endständige IO(OH)-Gruppen vorliegen.

Ergebnisse und Diskussion

Schwingungsspektrum

Die IR- und *Raman*-Spektren im Bereich zwischen 1 400 und 250 cm^{-1} sind in Abb. 1 wiedergegeben. Die entsprechende Zuordnung ist aus

Abb. 1. Raman (A) und IR-Spektrum (B) von $K_4[H_2I_2S_2O_{14}]$

Infrarot	Raman	Zuordnung	
2 790 2 430 (Sch) 2 370		v(O—H)	
1 250	 ,	$\delta(\text{IOH})$	
1 155 1 118 (Sch) 1 095 1 065	$ \begin{array}{c} 1 \\ 1 \\ - \\ 1 \\ 101 \\ \sim 1 \\ 0 \\ 3 \\ \end{array} \right\} $	v ₃ (SO ₄)	
974 825 803	972 825 789	$v_1(SO_4)$ $v(IO_2)$	
760 (Sch)	761	(?)	
640 620 605	634 624 594	$ \begin{aligned} \nu(\mathrm{I_2O_2}) \\ + \nu_4(\mathrm{SO_4}) \end{aligned} $	
450	449	$v_2(SO_4)$	
375 345 315 300	$ \begin{array}{c} 381 \\ 350 \\ 327 \\ 307 \end{array} $	vgl. Text	

Tabelle 1. Zuordnung des Schwingungsspektrums von $K_4[H_2I_2S_2O_{14}]$ (Bandenlagen in cm $^{-1})$

Tabelle 1 zu entnehmen, wozu folgende Kommentare und Bemerkungen hinzuzufügen sind:

a. Die Schwingungsbanden zwischen 2 800 und 2 350 cm⁻¹, welche den O--H-Streckschwingungen zugeordnet werden, liegen im gleichen Bereich wie bei zahlreichen kristallinen Orthoperjodaten (z. B. Na₃H₂IO₆ und Li₂H₃IO₆)², was auch im vorliegenden Fall auf das Vorliegen sehr starker Wasserstoffbrücken deutet.

b. Die Schwingungen der SO₄-Tetraeder sind ganz deutlich und einwandfrei zuzuordnen. Sie liegen in einem ganz ähnlichen Bereich wie beim β -K₂SO₄³, obwohl die antisymmetrische v₃-Bande im IR-Spektrum eine etwas deutlichere und größere Aufspaltung aufweist. Dies ist sicherlich auf Faktorgruppeneffekte zurückzuführen.

c. Die hohe Intensität mit welcher sowohl die v_1 - wie auch die v_2 -Schwingung auftreten ist sicherlich durch die erhebliche Symmetrieerniedrigung der SO₄-Gruppen im Kristallgitter bedingt.

d. Auch die Schwingungen der I—O-Bindungen lassen sich ziemlich eindeutig zuordnen. Die mittelstarke IR-Bande bei 1250 cm^{-1} ist I(OH)-

Deformationsschwingungen zuzuschreiben^{2,4}, was beweist, daß die Protonen tatsächlich an die endständigen IO₂-Gruppen gebunden sind, so daß man das untersuchte Polyanion besser als $H_2S_2I_2O_{14}^4$ formulieren sollte.

e. Die Spektralbanden im Bereich zwischen 789 und 825 cm^{-1} sind mit den Streckschwingungen dieser IO(OH)-Gruppen verbunden. Sie liegen etwas höher als gewöhnlich bei einfachen Orthoperjodaten; dies ist sicherlich durch die Kondensation der IO₆-Oktaeder bedingt, welche zu einer Stärkung der endständigen Gruppen führt.

f. Die Streckschwingungen der I_2O_2 -Doppelbrücke liegen zwischen 640 und 590 cm⁻¹. Die niedrigste Komponente fällt mit der v_4 -Sulfat-Deformationsschwingung zusammen. Auch I—O—S-Streckschwingungen könnten eventuell noch in diesen Bereich auftreten und mit den Doppelbrückenbewegungen gekoppelt sein.

g. Im Bereich unter 400 cm^{-1} ist eine ausführliche Zuordnung schon sehr schwierig. Hier müßten neben I—O—S-Streckschwingungen noch die verschiedenen Deformationsschwingungen liegen.

h. Die Tatsache, daß die meisten entsprechenden IR- und *Raman*-Banden geringfügige Frequenzunterschiede aufweisen, läßt sich durch die Anwesenheit der zentrosymmetrischen Struktur rechtfertigen. Damit wird das Alternativverbot⁵ gültig und dadurch entsprechen die IR- und *Raman*-Banden Phononen verschiedener Paritäten.

Interessant erscheint weiterhin auch noch ein Vergleich mit dem Spektrum des $[H_2V_2I_2O_{16}]^6$ --Anions. In diesen liegen praktisch unverzerrte IO₆-Oktaeder vor, welche nach einer Seite über eine Kante und nach der anderen Seite über eine Ecke mit VO₅-Polyeder verbunden sind⁶. Somit entsteht auch ein vierkerniges Polyanion bei welchen die IO₂-Streckschwingungen bei 757 bzw. 704 cm⁻¹ und die δ (IOH) bei 1 185 cm⁻¹ liegen⁶.

Die für das $H_2I_2S_2O_{14}^{4-}$ -Polyanion durchgeführte spektroskopische Untersuchung bestätigt also weitgehend das vorgeschlagene Strukturmodell¹ und erweitert es, indem es die Protonierungslage eindeutig feststellen läßt.

Thermisches Verhalten

Um weitere Einsicht in das Verhalten dieses interessanten Polyanions zu bekommen, haben wir auch noch den thermischen Abbau mittels TGund DTA-Messungen untersucht.

Ein typisches Thermogramm ist in Abb. 2 wiedergegeben und die entsprechende Auswertung ist Tabelle 2 zu entnehmen. Diese Auswertung, sowie die spektroskopische und röntgenographische Untersuchung der Zwischen- und Endprodukte, erlaubten folgendes Zersetzungsschema vorzuschlagen:

Abb. 2. Typisches Thermogramm von $K_4[H_2I_2S_2O_{14}]$

Tabelle 2. Auswertung der TG- und DTA-Daten von K₄[H₂I₂S₂O₁₄]

T(°C)	% Gewichts- verlust	Produkt (% theoret.)	DTA-Signal
212	2,5	H ₂ O (2.57%)	Endo
360	48,4	$I_2 + 2.5 O_2 (48.92\%)$	Endo
563		polymorphe Umwandlung	Endo

$$K_4[H_2I_2S_2O_{14}] \rightarrow 2\beta - K_2SO_4 + I_2O_5 + H_2O$$
 (1)

$$2\beta - K_2 SO_4 + I_2 O_5 \rightarrow 2\beta - K_2 SO_4 + I_2 + 2.5 O_2$$
(2)

$$\beta - K_2 SO_4 \to \alpha - K_2 SO_4 \tag{3}$$

Jede dieser Etappen ist also mit einem der drei beobachteten DTA-Peaks verbunden.

Man kann demnach feststellen, daß zusammen mit der Wasserabgabe bei 212 °C das Polyanion zusammenbricht und ein Gemisch von I₂O₅ und β -K₂SO₄ entsteht. Bei der Zersetzung werden also die I—O—S-Bindungen sowie ein Glied der I₂O₂-Doppelbrücken gesprengt, so daß nun SO₄^{2—}-Gruppen und freies Dijodpentoxid zurückbleiben. Die röntgenographische^{7,8} und IR-spektroskopische^{3,9} Untersuchung

Die röntgenographische ^{7,8} und IR-spektroskopische ^{3,9} Untersuchung von Zersetzungsprodukten, welche bei verschiedenen Temperaturen im Bereich zwischen 220 und 320 °C erhalten wurden, zeigte deutlich, daß

diese tatsächlich aus einem Gemisch von I_2O_5 und β -K₂SO₄ bestehen. Ähnliche Messungen im Bereich zwischen 360 und 550 °C zeigten, daß reines β -K₂SO₄ vorliegt, womit Etappe (2) bestätigt wird.

In der zweiten Stufe zersetzt sich also das vorhandene I_2O_5 in seine flüchtigen Elementarkomponenten.

Der letzte DTA-Peak bei 563 °C ist somit mit der polymorphen Umwandlung von β -K₂SO₄ in α -K₂SO₄ verbunden. Auch das Entstehen der α -Modifikation des Kaliumsulfats wurde deutlich durch das entsprechende Pulverdiagramm⁷ bestätigt. Besonders interessant ist hierbei zu erwähnen, daß die in der Literatur angegebene Umwandlungstemperatur bei 586 °C liegt⁷. Dies bedeutet, daß der hier gefundene Wert um 23 °C niedriger ist und dies beweist sicherlich, daß das durch thermische Zersetzung primär gebildete β -K₂SO₄ schon in einer gewissermaßen "aktivierter" Form vorliegt, welche die darauffolgende Umwandlung erleichtert. Diese "Aktivierung" ist sicherlich mit der Oberflächenenergie verbunden (vgl. z. B.¹⁰), welche wiederum von der Vorgeschichte des Materials abhängig ist. Ähnliche Verschiebungen von Umwandlungstemperaturen sind öfters auch durch mechanische Aktivierung (z. B. durch starke Verreibung) von Festkörpern zu erhalten.

Die hier beschriebene thermische Zersetzung mit Zwischenbildung von I_2O_5 und darauffolgende Zersetzung desselben erinnert auch an das Verhalten des Kaliumjodochromats, KCrIO₆, welches zuerst ein $K_2Cr_2O_7/I_2O_5$ -Gemisch liefert und bei weiterem Erhitzen I_2 und O_2 gibt¹¹.

Dank

Diese Arbeit wurde mit Unterstützung des CONICET (Programa QUINOR) und der CIC-Provincia de Buenos Aires durchgeführt. Frau *L. L. Fournier* gilt unser Dank für die Messung der *Raman*-Spektren.

Experimenteller Teil

Die Substanz wurde durch Auflösen eines stöchiometrischen Gemisches von $KHSO_4$ und KIO_3 in Wasser und langsame Verdampfung des Lösungsmittels bei Raumtemperatur erhalten¹.

Die IR-Spektren wurden an KBr-Preßlingen des Festkörpers mit einem Perkin-Elmer 580 B-Spektralphotometer erhalten. Die *Raman*-Spektren wurden mit einem SPEX-Ramalog 1403-Doppelmonochromator Spektrometer aufgenommen; zur Anregung diente die 514.5 nm Linie eines Ar⁺-Lasers.

Die Pulverdiagramme wurden mit einem Philips 1732/10-Diffraktometer unter Anwendung von Cu- K_{α} -Strahlung (Ni-Filter) erhalten. Als Eichsubstanz diente NaCl.

Die TG- und DTA-Messungen wurden mit einem Linseis-L81 thermoanalytischen System durchgeführt. Es wurde an der Luft und bei einer Aufheizgeschwindigkeit von 5 °C/min gearbeitet. Als DTA-Standard diente Al_2O_3 .

Literatur

- ¹ Averbuch-Pouchot M. Th., J. Solid State Chem. 41, 262 (1982).
- ² Siebert H., Z. anorg. allg. Chem. 303, 162 (1960).
- ³ Tarte P., Nizet G., Spectrochim. Acta 20, 503 (1964).
- ⁴ Siebert H., Z. anorg. allg. Chem. 304, 266 (1960).
- ⁵ Weidlein J., Müller U., Dehnicke K., Schwingungsspektroskopie. Stuttgart: G. Thieme. 1982.
- ⁶ Mattes R., Richter K.-L., Z. Naturforsch. 37 b, 1241 (1982).
- ⁷ Pannetier G., Gaultier M., Bull. Soc. Chim. France 1966, 188.
- ⁸ ASTM-Kartei, Karte 1-0684.
- ⁹ Sherwood P. M. A., Turner J. J., Spectrochim. Acta 26A, 1975 (1970).
- ¹⁰ Kleber W., Einführung in die Kristallographie, 7. Aufl., S. 195. Berlin: VEB Verlag Technik. 1956.
- ¹¹ Kebir A., Vast P., C. Rend. Acad. Sci. Paris C 276, 503 (1973).